


Ultra-Low Jitter Crystal Oscillators (VCXO)

Features

- Available at any frequency from 10 MHz to 1000 MHz
- Ultra-Low Jitter (12 KHz to 20 MHz)
 - o 32 fs at 312.50 MHz
 - o 34 fs at 491.52 MHz
- Total stability of ±5 ppm
- Programmable tuning slope (Kvco) up to 300 ppm/V
- CML/LVDS/LVPECL/HCSL output formats
- Simplified BoM with no external loop filters
- Output Enable/Disable Feature
- < 10 ms start-up time
- No activity dips or micro jumps
- Industry standard 3.2X2.5 mm 8-pin LGA package
- Single 1.8V supply with internal regulator
- Superior power supply immunity
- Temperature range: -40°C to 85°C
- Temperature extended range: -40°C to 105°C
- ESD HBM 2000V, CDM 500V
- Lead free / RoHS compliant

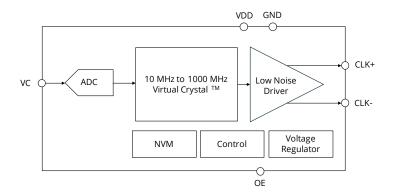
Applications

- SONET/SDH
- 10 GbE LAN/WAN
- Wireless Infrastructure
- Synchronous Ethernet
- Optical modules
- Clock and data recovery
- Clock Generation and Frequency Translation
- High-performance replacement for SAW

General Description

The MS1220 is a voltage-controlled crystal oscillator (VCXO) powered by our Virtual Crystal[™] technology that enables ultra stable fully programmable multi-GHz clocks with extremely low phase noise.

Adaptive fully autonomous DSP algorithms running in the background continuously monitor and ensure robust and consistent performance over process, voltage, and temperature variations.


The devices are factory programmed to provide any frequency between 10 MHz and 1000 MHz with less than 1 ppb resolution.

The MS1220 is manufactured in a high-volume 28 nm CMOS process and represents the most advanced node in the timing industry.

Device Information

Part Number	Package	Description
MS1220	3.2X2.5 mm 8-pin LGA	Single frequency

Figure 1. Functional Block Diagram

MS1220

Single Frequency Device

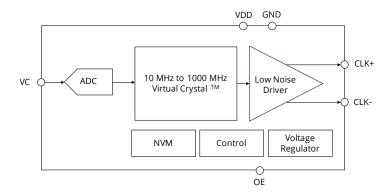


Figure 2. MS1220 Functional Block Diagram

Pin Assignment and Pin Description

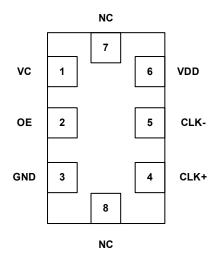


Figure 3. MS1220 Pin Assignments

Table 1. MS1220 Pin Descriptions

Pin No	Name	Description
1	VC	Control Voltage
2	OE	Output Enable
3	GND	Ground
4	CLK+	Clock Output
5	CLK-	Complementary Clock Output
6	VDD	Power Supply
7	NC	No Connect
8	NC	No Connect

Specifications

Table 2. Electrical Specifications

Typical values are specified at T_A= 25°C, V_{DD}=1.8V unless otherwise specified. All Min and Max limits are specified over the operating temperature range and voltage range with standard termination. A 0.1uF and 10uf bypass capacitor should be connected between VDD and GND pins located close to the device.

ameter Symbol Test Condition/Comment	Min	Тур	Max	Unit
--------------------------------------	-----	-----	-----	------

Frequency Range

Frequency Range	F _{CLK}	All Output Formats	10	1000	MHz

Frequency Stability

Frequency Stability*	F _{STB}	-40°C to 85°C	-5	5	PPM
Frequency Stability*	F _{STB}	-40°C to 105°C	-20	20	PPM

^{*}Frequency stability includes initial tolerance, voltage tolerance, operating temperature and aging (10 year, +25°C). Aging is estimated from environmental reliability tests;

Clock Output Jitter Characteristics

Note:				
(12 KHz – 20 MHz)	$\Phi_{ extsf{JITTER}}$	Frequency=312.5 MHz	32	fs
RMS Phase Jitter				

Phase jitter measured on Agilent 5052B Signal Source Analyzer

Operating Voltage/Temperature Range

Supply Voltage	V_{DD}		1.71	1.8	1.89	V
	_	Industrial Temperature	-40		85	°C
Temperature Range	T _A	Extended Industrial Temperature	-40		105	°C

Current Consumption

MS1220_VCXO Rev 1.0 Page 3 of 19

		LVDS Output	80	100	mΛ
		(Output Enabled)	80	100	mA
Supply Current		All Other Outputs	00	110	m Λ
	I _{DD}	(Output Enabled)	90	110	mA
		Tristate Hi-Z	5 0	60	m Λ
		(Output Disabled)	50	60	mA

Input Characteristics

Digital Input Levels	V _{IH}		0.7XV _{DD}		V
(OE)	V _{IL}			0.3XV _{DD}	V
Output Enable (OE)	T _D	Output Disable Time		3	us
	T _E	Output Enable Time		20	us
Powerup Time	T _{PWR}	Time from 0.9xVDD until output frequency (Fclk) within spec		10	ms

PSRR Characteristics

PSRR PS	PSRR _{SPUR}	Spurs induced by 50mV power supply ripples (All frequency, all output types)		-100		dBc	
---------	----------------------	--	--	------	--	-----	--

Note:

(1) Measured maximum spur level with 50mVpp sinusoidal signal between 50 kHz and 1 MHz applied on VDD Pin

Output Characteristics

		Output Characterist				
Output Duty Cycle	DC	All Output Formats	48		52	%
Output Rise/Fall Time (20% to 80% V _{PP})	T _R / T _F	All Output Formats		65	100	ps
LVDS Output (AC Mode)	Vo	Swing (Diff)	0.5	0.7	0.9	V
LVDS Extended Output (AC Mode)	Vo	Swing (Diff)	0.8	1.2	1.6	V
CML Output (AC Mode)	Vo	Swing (Diff)	0.7	0.85	1	V
LVPECL Output (AC Mode) Integrated Termination	Vo	Swing (Diff)	1.2	1.4	1.6	V
HCSL Output Integrated Termination	Vo	Swing (Diff)	1.2	1.4	1.6	V

Vc Control Voltage Input

Parameter	Symbol	Test Condition/Comment	Min	Тур	Max	Unit
				50		
				100		
Control Voltage Tuning	Kuaa	0.41/45.0.01/		150		
Slope1	Kvco	0.1V to 0.9V		200		ppm/V
				250		
				300		
Control Voltage Linearity	Lvo	Best Straight Line Fit	-1.5	±0.5	+1.5	%
Control Voltage Linearity	Lvc	KVCO Variation	-10	±5	+10	%
Modulation Bandwidth	BW			10		kHz
Vc Input Impedance	Zvc		500			kΩ
Nominal Control Voltage	Vcnom	@fo		0.5		V
Control Voltage Tuning Range	Vc		0.1		0.9	V

Table 3. Absolute Maximum Ratings

Min	Max	Unit
-0.3	1.98	٧
-0.3	1.98	V
	105	°C
-55	150	°C
	260	°C
	150	°C
	-0.3	-0.3 1.98 -0.3 1.98 105 -55 150 260

Note: Stresses that exceed what is listed in this table may cause permanent damage to the device. Exposure to conditions above the recommendations for extended periods of time may affect device reliability.

Table 4. Package Thermal Information

Package	Parameter	Symbol	Value	Unit
	Thermal Resistance, Junction to Ambient	Ø _{JA}	80	°C/W
3.2mmX2.5mm 8 pin LGA	Thermal Resistance, Junction to Board	ØJB	40	°C/W
	Air Flow Condition		0	mps
	Maximum Junction Temperature	TJ	125	°C

Note: The thermal resistance information stated in this table is based on a standard JEDEC PCB condition. The actual thermal resistance varies depending on the customer PCB design.

Table 5. Environmental Compliance

Parameter	Test Condition	
Mechanical Shock	MIL-STD-883, Method 2002	
Mechanical Vibration	MIL-STD-883, Method 2007	
Moisture Sensitivity Level (MSL) 3		
Note: For additional information not listed, please contact Mixed-Signal Devices.		

Table 6. ESD Levels

Description	Description	Specification	Level
HBM ¹	Human Body Model	JEDEC JS-001	2000V
CDM ²	Charge Device Model	JEDEC JESD22-C101	500V

Notes:

Table 7. Typical Output Phase Noise Characteristics

VDD= 1.8V, T_A = 25°C, Output Type = CML

Offset frequency	156.25 MHz	312.50 MHz	491.52 MHz	625.00 MHz	Unit
1 KHz	-107	-101	-96	-94	dBc/Hz
10 KHz	-136	-130	-126	-124	dBc/Hz
100 KHz	-156	-152	-148	-145	dBc/Hz
1 MHz	-165	-161	-156	-153	dBc/Hz
10 MHz	-166	-162	-157	-154	dBc/Hz
20 MHz	-166	-162	-157	-154	dBc/Hz
RMS Jitter (12 KHz – 20 MHz)	39.8 fs	31.9 fs	34.3 fs	38.2 fs	fs

 $^{1.\,1000}V\,HBM\ allows\ safe\ manufacturing\ with\ standard\ ESD\ control\ process-JEDEC\ document\ JEP155$

^{2. 250}V CDM allows safe manufacturing with standard ESD control process – JEDEC document JEP157

Page 8 of 19

Typical Output Measured Phase Noise Plots

This section shows three MS1220 performance plots.

Measurement parameters are: VDD = 1.8 V, TA = 25°C, Output Type = CML.

The plots were captured using an Agilent 5052B Signal Source Analyzer.

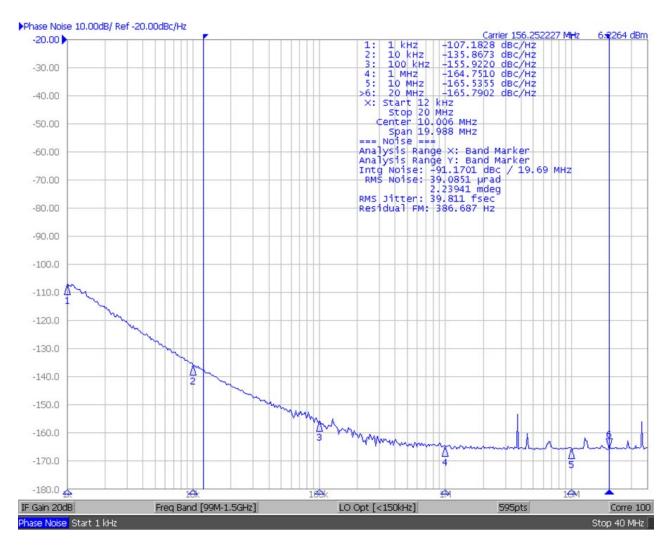


Figure 4. Carrier: 156.25 MHz

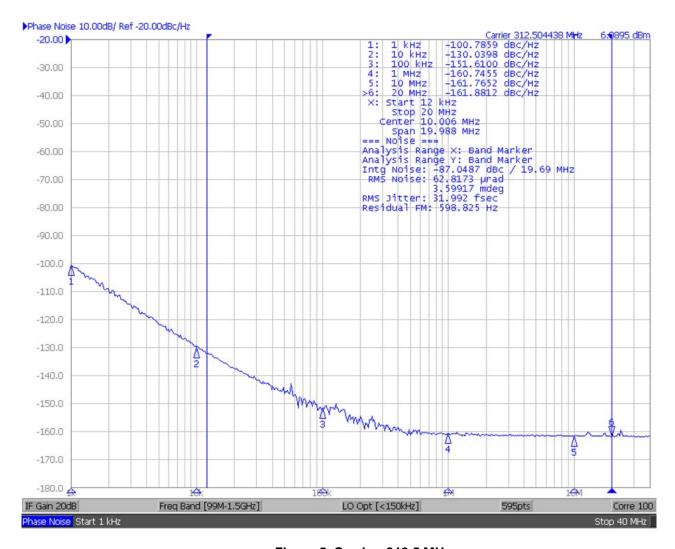


Figure 5. Carrier: 312.5 MHz

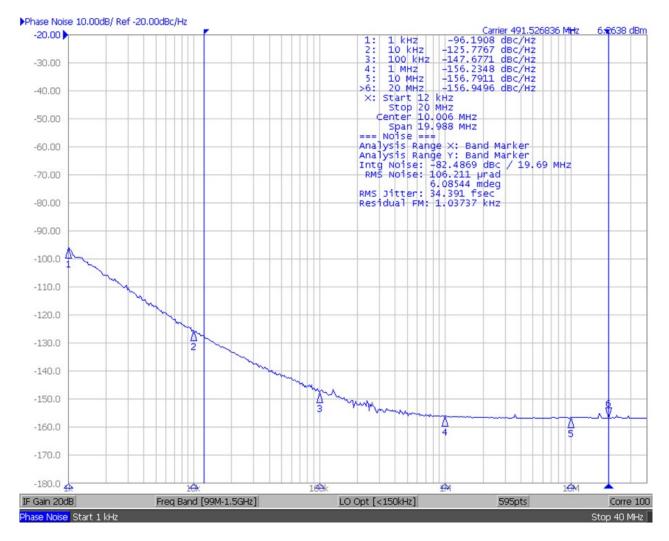


Figure 6. Carrier: 491.52 MHz

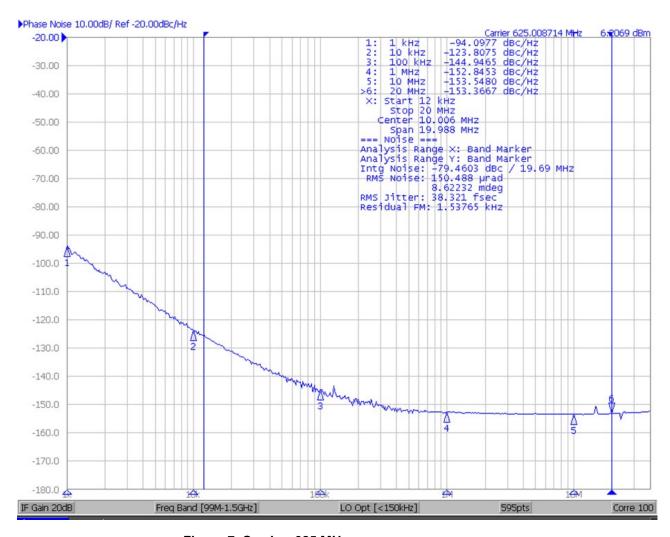


Figure 7. Carrier: 625 MHz

Output Terminations

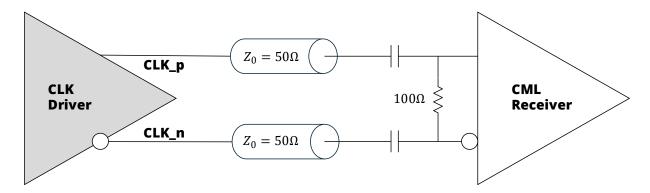


Figure 8. AC-Coupled CML

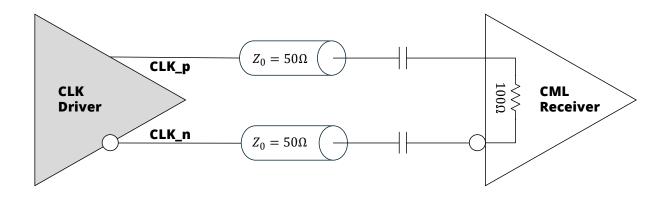


Figure 9. AC-Coupled CML (Receiver Termination)

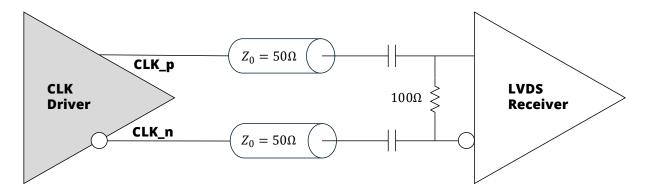


Figure 10. AC-Coupled LVDS

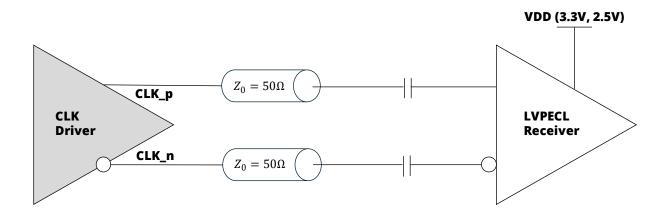


Figure 11. AC-Coupled LVPECL (Integrated Termination)

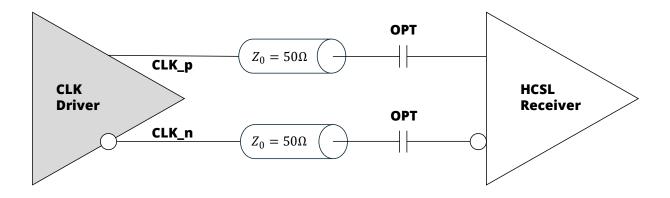


Figure 12. HCSL (Integrated Termination)

Packaging Information

Figure 13 shows the MS1220 packaging drawing.

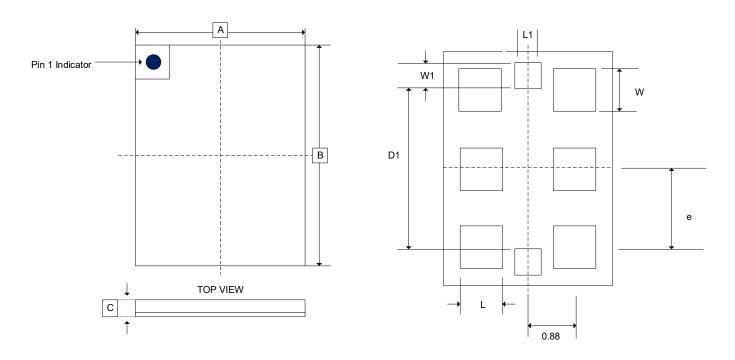


Figure 13. MS1220 Packaging Drawing (3.2mm x 2.5 mm)

Table 8. MS1220 Packaging Dimensions

Dimensions	Min	Nom	Max
А	2.5 BSC		
В	3.2 BSC		
С	0.806	0.946	1.1
W	0.55	0.6	0.65
L	0.5	0.55	0.6
W1	0.35	0.4	0.45
L1	0.35	0.4	0.45
е	1.1 BSC		
D1	2.2 BSC		
Package Edge Tolerance	0.1		
Mold Flatness	0.1		
Coplanarity	0.08		

Packaging Land Pattern

Figure 14 shows the MS1220 PCB land pattern.

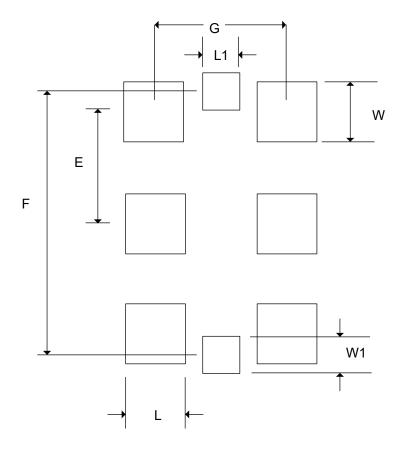


Figure 14. MS1220 Packaging Land Pattern Drawing (3.2mm x 2.5mm)

Table 9. MS1220 Packaging Land Pattern Dimensions

Dimensions	In mm
L	0.7
W	0.7
L1	0.5
W1	0.55
E	1.1
F	2.6
G	1.76

Device Top Marking

MS1220 BBBBB.BB • YYWW AC

Figure 15. MS1220 Device Top Marking Showing Pin 1

Table 10. MS1220 Device Marking Legend

Line	Position	Description
1	1	Part Number
2	1-5	Wafer Lot Number
2	6-7	Wafer #
	Lot Traceability	
	1	Pin 1 Orientation Mark (Dot),
3	2-3	Year (last two digits of the year)
4-5	4-5	Calendar Work Week Number (1-53)
	6-7	Assembly Code

Part Ordering Information

Figure 16 shows a logic tree for ordering each of the three available parts.

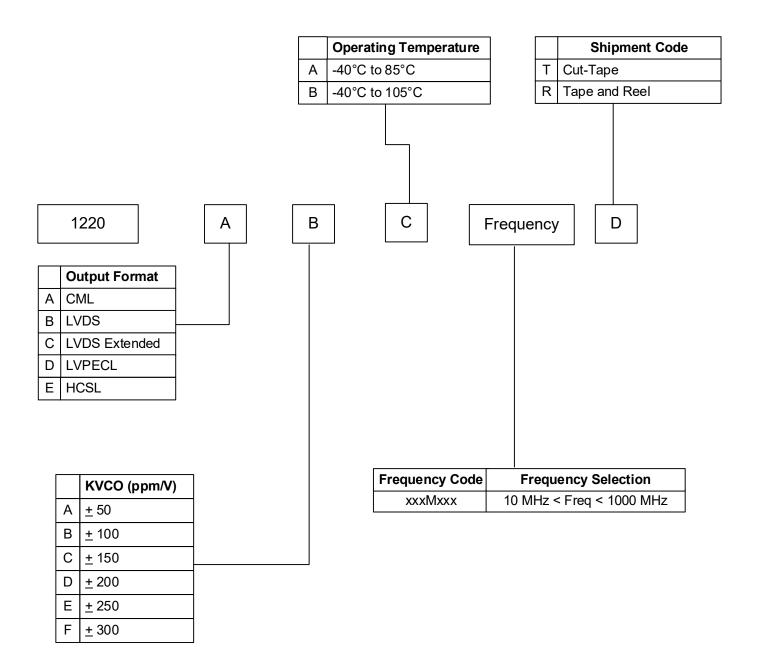


Figure 16. MS1220 Part Ordering Information

IMPORTANT NOTICE AND DISCLAIMER

MIXED-SIGNAL DEVICES INC. PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

Mailing Address: Mixed-Signal Devices Inc, 2 Venture, Suite 300, Irvine, California 92618, USA Copyright © 2023